Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959871

RESUMO

In this study, a new 3D porous PVDF-foam-imprinted membrane (PPIM) for the selective separation of artemisinin (ART) was first prepared via the dopamine adhesion of pre-synthesized MIPs into the interior of the PPIM. In the PPIM, the pre-synthesized molecularly imprinted polymers (MIPs) with artesunate (ARU) as a dummy template were uniformly loaded on the interior of the membrane, avoiding the defects of recognition site encapsulation found in the conventional membrane. This membrane also exhibited excellent flux, which is beneficial in practical separation applications. The PPIM was systematically characterized via FT-IR, SEM, pore-size distribution analysis, water contact angle test, membrane flux, and mechanical performance analysis, respectively. In the static adsorption experiment, the pseudo-second-order kinetic model better fitted the rebinding data of ART. Under dynamic conditions, the ART adsorption capacity of the PPIM could be further remarkably improved by tailoring the flow rate to 3 mL min-1. In the selective separation experiment, with artemether (ARE) as the competition substrate, the selective separation ability (α) of the PPIM towards ART/artemether (ARE) reached its peak value (3.16) within only 10 min at this flow rate, which is higher than that of porous PVDF foam non-imprinted membranes (PPNM) (ca. 1.5), showing great separation efficiency in a short time. Moreover, the PPIM can be reused five times without a significant decrease in its adsorption capacities, showing good regeneration performance. This work highlights a simple strategy for constructing new MIMs with high flux and great mechanical strength to achieve the efficient selective separation of ART and ARE in practical applications.

2.
Sci Rep ; 6: 38257, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905544

RESUMO

Although the solution deposition of YBa2Cu3O7-x (YBCO) superconducting films is cost effective and capable of large-scale production, further improvements in their superconductivity are necessary. In this study, a deep UV (DUV) irradiation technique combined with a low-fluorine solution process was developed to prepare YBCO films. An acrylic acidic group as the chelating agent was used in the precursor solution. The acrylic acidic group was highly sensitive to DUV light at 254 nm and significantly absorbed UV light. The coated gel films exposed to DUV light decomposed at 150 °C and copper aggregation was prevented. The UV irradiation promoted the removal of the carbon residue and other by-products in the films, increased the density and enhanced the crystallinity and superconductivity of the YBCO films. Using a solution with F/Ba = 2, YBCO films with thicknesses of 260 nm and enhanced critical current densities of nearly 8 MA/cm2 were produced on the LaAlO3 (LAO) substrates.

3.
Water Environ Res ; 85(2): 184-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23472335

RESUMO

Silica/cell composites were prepared for the adsorption of lead ions, Pb(II), from aqueous solution in a batch system. The silica/cell composites possessed micropores, high surface area, and abundant functional groups. Adsorption performance was investigated by analyzing the effects of such factors as the initial pH, contact time with different initial concentration, and initial Pb(II) concentration at different temperature. The kinetic data were fitted to pseudo-second-order and intraparticle diffusion kinetic models. The results were better fitted by the pseudo-second-order kinetic model. Intraparticle diffusion increased with an increase of initial concentration and the sorption process was controlled by film diffusion. The Langmuir isotherm model was fitted to the experimental data significantly better than Freundlich and Dubinin-Radushkevich isotherm models. The maximum adsorption capacity was 97.10 mg g(-1), according to the Langmuir isotherm model. Thermodynamics parameters confirmed the spontaneous, endothermic, and entropy-gained nature within the studied temperature range (from 298 to 318 K). The composites could be effectively desorbed by the 2.0 mol L(-1) HNO3 solution and would be a potential adsorbent.


Assuntos
Parede Celular/química , Chumbo/isolamento & purificação , Dióxido de Silício/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Bacillus subtilis/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...